
http://www.influxis.com

http://www.influxis.com

4

Editor’s Note

05/2010 (13)

Dear Readers!
Summer is here. Time for relaxing and putting our powers off for this time. Do the brain
reset and get back with doubled energy. Hopefully you won’t forget to take this issue with
you ;)
This magazine is mostly about learning new techniques and keeping up with the latest
industry news, it is also made for practical knowledge. This time we have chosen a great
article that we recommend for every Flash/Flex Developer – Protect, License and Sell
Adobe Flex & AIR Apps. That’s really crucial for those who would like to earn serious
money from their passion.
For those who would like to start from the beginning – we have prepared a great article

where you can learn basic steps for developing Android Apps with Adobe AIR. Yet many developers, even senior
developers, don’t truly understand the power of refactoring. In the article Refactoring ActionScript Code, you’ll go
over the refactoring features in SourceMate one by one – great, isn’t it? Do you play FarmVille – the most popular
game on Facebook? Read about the explanation of the game client flash vars list, and much more about the game.
Besides that, Fluid Layouts with ActionScript 3.0, Flex4 and Zend and PHP articles.
There is much more inside – let’s not waste your time and skip to the content. We look forward to sharing more
information with the community in the coming weeks and months. If you have questions, comments, or concerns,
please don’t hesitate to contact me directly, or ask our authors about any details.
I want to thank you for your continued commitment to the FFD mag community, and I look forward to new
opportunities to work together.

With best regards,

Ewa Samulska
ewa.samulska@ffdmag.com

Editor in Chief: Ewa Samulska ewa.samulska@ffdmag.com
Proofreaders: Betsy Irvine, Patrick French

DTP Team: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher: Paweł Marciniak

Publisher: Software Press Sp. z o.o. SK
ul. Bokserska 1 02-682 Warszawa Poland Worldwide Publishing

Software Press Sp. z o.o. SK is looking for partners from all over the World.
If you are interested in cooperating with us,
please contact us by e-mail: cooperation@software.com.pl

Whilst every effort has been made to ensure the high quality of the magazine, the
editors make no warranty, express or implied, concerning the results of content usage.

All trade marks presented in the magazine were used only for informative purposes.
All rights to trade marks presented in the magazine are reserved by the companies
which own them.

Thanks to the most active and helping beta testers:
Russell TangChoon, Lee Graham, Jassa Amir Lang, Ed Werzyn, Yann Smith-Kielland,
Justus, Csomák Gábor, Kevin Martin, Charles Wong, Ali Raza, Almog Koren, Izcoatl
Armando Estanol Fuentes, Lionel Low, Michael J. Iriarte, Paula R. Mould, Rosarin
Adulseranee, Sidney de Koning

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Distributing current or past issues of this magazine – without permission of the
publisher – is harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be used in private, local net-
works. The editors hold no responsibility for misuse of the presented techniques
or consequent data loss.

mailto:samulska@ffdmag.com
mailto:samulska@ffdmag.com
mailto:pogroszewski@software.com.pl
mailto:pogroszewski@software.com.pl
mailto:cooperation@software.com.pl
mailto:ewa.samulska@ffdmag.com

http://www.page-flip.com

6
05/2010 (13)

CONTENTS

Influxis
www.influxis.com ... 2-3

Mediaparts Interactive S.A
www.page-flip.com ...5

FusionMaps for Flex
www.fusioncharts.com/flex 7

Kevin Ruse + Associatess Inc.
www.kevinruse.com .. 9

Kindisoft
www.kindisoft.com ..13

ElementRiver
www.elementriver.com21

Gamersafe
www.gamersafe.com ..23

Flex{er}
www.flexer.info .. 29

Exsys
www.exsys.com ...41

FITC
www.fitc.ca/SF ..45

Flash and Math
www.flashandmath.com49

ActionScriptJobs.com
http://actionscriptjobs.com/51

The issue 5/2010 sponsored by Advertisers:

Event Listener for XML
Michael Greenhut, Arkadium Game Programmer

When populating a Flash application with xml, you may have
race condition – your ActionScript might call a function to load
the xml, then execute before the xml has time to load, and
you’ll be left with a lot of empty fields and null values that
you weren’t expecting. To avoid this, add an event listener in
your ActionScript code that waits for the xml to load before it
advances too far. Something like this:

private function loadXML()
{
 var xmlLoader:URLLoader = new URLLoader();
xmlLoader.addEventListener(Event.COMPLETE, onLevelX

mlFinishedLoading);
xmlLoader.load(new URLRequest(“stuff.xml”));
}

private function onLevelXmlFinishedLoading(e:Event)
{

… //pick things up here

}

(this is also true for the .swf Loader class)

Tip of the issue

Special Report

08 GoogleTV

BY LEE GRAHAM

10 Refactoring ActionScript Code with
SourceMate
BY CHRIS GROSS

14 Overcoming FUD Protecting, Licensing and
Selling Adobe Flex & AIR Apps
BY CLIFF HALL

InBrief

22 News

BY CSOMÁK GÁBOR

APPS

24 Getting start to develop Android apps with
Adobe AIR
BY WILLIAM TSANG

GAMES

30 Preparing a Robot to Play FarmVille
Automatically
BY ELAD COHEN

ActionScript Development

32 Fluid Layouts with ActionScript3.0

BY RYAN D’AGOSTINO

Flex Development

36 Flex 4 – The Problem With Children

BY HUW COLLINGBOURNE

ZEND and PHP

42 How to: Remoting with Zend Studio and Flash
Builder (PART 2)
BY KEVIN SCHROEDER

Interview

46 Interview with Chris Gross

PROFILE

48 Ryan D’Agostino

Books Review

50 Flex 4 Cookbook Real-world recipes for
developing Rich Internet Applications
BY ALI RAZA

http://www.influxis.com
http://www.page-flip.com
http://www.fusioncharts.com/flex
http://www.kevinruse.com
http://www.kindisoft.com
http://www.elementriver.com
http://www.gamersafe.com
http://www.flexer.info
http://www.exsys.com
http://www.fitc.ca/SF
http://www.flashandmath.com
http://actionscriptjobs.com

http://www.fusioncharts.com/flex

05/2010 (13)8

Well if you haven’t heard, Google has
announced that they are releasing Google
TV (http://www.google.com/tv/). Think of it

as mixing your computer into your TV. You can view
anything on the web, including Flash content! Check
out this demo (http://blogs.adobe.com/flashplatform/
2010/05/flash_player_101_on_google_tv.html) from
Adobe about Flash content on Google TV. Another
HUGE bonus is that Google TV will support Android
Apps within Google TV. So we are going to be able to
access Android Apps, surf the web, view your favorite
TV programs and interactive with Flash content from
the comforts of your couch. Pretty wicked, right?

Details are very limited at this point about the Adobe
Flash on Google TV, but I’ve heard rumors that the AIR
for Android (http://labs.adobe.com/technologies/air2/
android/) apps will eventually be able to run on Google
TV as well! Stay tuned for more on this!!!

This magazine is mostly about learning new
techniques and keeping up with the latest
industry news, but I thought I would do something

a little bit and showcase a few apps developed with the
tools we use everyday.

Atlantic Records’ FanBase (Flash & Flex): http://
tv.adobe.com/watch/customer-stories-air/atlantic-
records-fanbase-application

Adelaide Football Club (Flash, Flex, ColdFusion,
LiveCycle, Flash Media Server, etc...): http://
www.adobe.com/cfusion/showcase/index.cfm?event=c
asestudydetail&casestudyid=1013470&loc=en_us

TweetDeck (Flex & AIR): http://tv.adobe.com/watch/
customer-stories-air/interview-with-tweetdeck-founder/

NCAA Vault (Flex, Flash Media Server, & Photoshop):
http://vault.ncaa.com/
http://blogs.adobe.com/flashplatform/2010/05/flash_

player_101_on_google_tv.html

Google TV
& Showcase

LEE GRAHAM
Lee Graham is co-founder of TRImagination
(http: //trimagination.tumblr.com/),
an educational app company based in
the United States. He has been involved
in developing interactive eLearning
applications for �ve years and working
with Adobe in beta testing Flash CS5, AIR
2.0, AIR for Android & Flash Player 10.1.
You can connect with him on Twitter:
http://twitter.com/donaldleegraham or his
Blog: http://l33.me/.

Flex, Flash,
AIR Showcase

http://www.google.com/tv
http://blogs.adobe.com/flashplatform/2010/05/flash_player_101_on_google_tv.html
http://blogs.adobe.com/flashplatform/2010/05/flash_player_101_on_google_tv.html
http://labs.adobe.com/technologies/air2/android
http://labs.adobe.com/technologies/air2/android
http://tv.adobe.com/watch/customer-stories-air/atlantic-records-fanbase-application
http://tv.adobe.com/watch/customer-stories-air/atlantic-records-fanbase-application
http://tv.adobe.com/watch/customer-stories-air/atlantic-records-fanbase-application
http://tv.adobe.com/watch/customer-stories-air/atlantic-records-fanbase-application
http://www.adobe.com/cfusion/showcase/index.cfm?event=c
http://www.adobe.com/cfusion/showcase/index.cfm?event=c
http://tv.adobe.com/watch
http://vault.ncaa.com
http://blogs.adobe.com/flashplatform/2010/05/flash_
http://trimagination.tumblr.com
http://twitter.com/donaldleegraham
http://l33.me

http://www.kevinruse.com

05/2010 (13)10 05/2010 (13) 11

This year, ElementRiver released SourceMate
and brought advanced code editing and code
generation features, including a set of advanced

refactoring capabilities, to Flash Builder 4. Yet many
developers, even senior developers, don’t truly
understand the power of refactoring. Moreover, individual
refactorings can be confusing and it’s not easy to know
when and where to use each refactoring. In this article,
we’ll go over the refactoring features in SourceMate one
by one. By the end, you should understand the power of
these features and you’ll see how automated refactoring
can save hours of development, often with just one use.

Refactoring: Convert Local Variable to Field
What it does: Converts the selected local variable into
a class field
When to use it: After you realize a local variable will be
needed to be accessed in other functions.

The Convert Local Variable to Field is one of the simpler
refactorings, but also one of the more commonly used.
Have you ever created a local variable only to realize
you need that value later in another function? This can
be especially common when working with asynchronous
events. You’ve written a function only to realize that you
need to wait for an event response before continuing
processing. Of course, you need access to the variable
or variables you’ve defined in the original function in the
event handling function. In these situations you can use
the Convert Local to Field refactoring to turn those local
variables into class fields so they can be accessed in

both the original function and in the subsequent event
handler. One of the nicest features of this refactoring
is that it doesn’t change your context. If you’re working
in a large file, having to scroll up to the top of the class
definition to add a new class field, and then scrolling back
to where you left off, is quite annoying. When you use
Convert Local to Field, the scroll position never changes.
The new field is created and you’re ready to keep coding
without having to find your place again. Of course, this
refactoring isn’t only useful with asynchronous code. In
any situation where you need access to a local variable
in another function, Convert Local to Field can help.

Refactoring: Extract Constant
What it does: Takes the selected literal value and turns
it into a class constant
When to use it: When it’s time to clean up those special
values.

The programming orthodoxy says “Thou shalt not put
hard coded literal values in thy code”. Of course, we don’t
always listen to the programming intelligentsia. Sometimes
we’re working against deadlines, or maybe we don’t see
the immediate need to make these literal values into
constants However, there are real benefits to doing so.
First, instead of seeing an obtuse literal value in code, we’ll
have a named constant that will provide at least a clue as
to what the literal means (so instead of seeing a “3.14” we’ll
see a constant named PIE). It’s also very important to turn
these literal values into constants if they’re used more than
once. Otherwise, if the next developer after us l has to make
a change he/she might miss a spot or two. To use Extract
Constant simply select or place your cursor inside a literal
value and select the refactoring from the SourceMate

Refactoring Actionscript Code

In 1999, Martin Fowler’s Refactoring: Improving the design
of existing code was published. Since then refactoring has
become a staple of software development.

with SourceMate

Figure 1. Convert local to �eld Figure 2. Extract constant

05/2010 (13)10 05/2010 (13) 11

When to use it: When you need to replace a class with
an interface

Sometimes you may create a class only to later realize you
need to allow for multiple implementations of that feature.
For example, you might have a logging class but you later
decide to log to different places depending on whether
your app is running in the web browser or running in AIR.
Ordinarily, you’d need to create a new interface, glancing
back at the original class from time to time to remember
the functions to include. Then add the implements clause
to the original class. And finally go through your existing
code to replace references of the original class to the new
interface. SourceMate can do all this for you with a few
clicks. The Extract Interface dialog will present you with a list
of functions from the original class. Choose which ones to
include and SourceMate will create the interface for you. It
will also add the implements clause to the original class. As
with all the other Extract features, SourceMate will replace
all the current references to the original class to the new
interface if that referencing code calls only methods you’ve
included in the new interface. SourceMate understands
your intentions and handles it all for you.

Refactoring: Extract Method
What it does: Moves the selected lines of code into their
own function
When to use it: When you find a certain set of code in an
existing function is useful in its own right

Extract Method is one of the clever refactorings in
SourceMate. How many times have you been writing some
code only to think that a couple lines of code should be
moved into a new function? Perhaps you’ve written the same
lines of code multiple times or perhaps you believe the code
is important enough to have its own method. Highlight the
lines of code in question and choose Extract Method. The
power of this refactoring is evident as it parses the selected
lines and determines which variables will be needed by
the new function. Those variables will become arguments
to the new function. In a similar manner, SourceMate
will parse the lines after the selection to determine if any
variables declared within the selection are referenced. If

menu. SourceMate will create a new class level constant
and replace the literal value under your cursor with this new
constant. Most significantly, SourceMate will go through all
the code in your class and replace any additional references
to the same literal value with the new constant.

Refactoring: Extract Local Var
What it does: Takes the selected expression and turns it
into a new local variable
When to use it: You find yourself retyping the same
expression over and over again

Arguably, refactoring is the process of changing code
with the knowledge of how the code should have been
written (”if I knew then what I know now”). Perhaps you
started writing code and entered a quick if expression
that checked an x,y coordinate that intersected the
class’s parent component. Something like this:

if (this.parent.hitTestPoint(x,y)) { ...

There’s nothing wrong with that code. But perhaps
you’ve continued writing code and you’ve had to check
that same coordinate intersection more than once. Not
only have you typed that same expression a couple of
times, but you’re also calling a potentially expensive
function more than necessary. We also have the added
concern that if we need to change the expression, we’ll
need to change each instance of it, potentially leading
to bugs if we miss an instance. Instead, use the Extract
Local Var refactoring. In this case, we’d select the entire
expression this.parent.hitTextPoint(x,y) and select
Extract Local Var from the SourceMate menu. Tell
SourceMate what you’d like to name the new variable
and then you’re code will look like this:

var intersects:Boolean = this.parent.hitTestPoint(x,y);

if (intersects) { ...

Just as with Extract Constant, SourceMate will also go
through the entire function and find any places you’ve
typed the same expression and replace it with the
new local variable. The code has become a little more
readable, more maintainable, and if we replaced more
than one instance of the expression, more efficient.

Refactoring: Extract Interface
What it does: Creates an interface from a selected set
of functions on the source class

Figure 3. Extract local var Figure 4. Extract interface

05/2010 (13)12

SourceMate finds a variable referenced after the selection,
it will return it from the newly created function. Essentially,
SourceMate untangles the collection of variables and
ensures that the existing code works the same after the
selected lines are encapsulated in a new method. When
complete, the selected code will be replaced with a call to
the new function, sending in the appropriate arguments and
capturing the return value. Of course, it bears repeating that
Extract Method, like all Extract refactorings, will find any
other lines of code that duplicate the ones being extracted
and replace them with a call to the new method.

Refactoring: Change Method Signature
What it does: Updates a function signature
When to use it: Anytime you need to change a function
signature without breaking calling code

Change Method Signature is arguably the most powerful
and useful refactoring but also the most misunderstood.
After all, changing a method signature seems like an easy,
straightforward task. But Change Method Signature’s
power comes from its ability to update code throughout
your project. Normally, when changing a method signature
you risk breaking any code in your project that calls that
method. Fortunately, Actionscript does allow you to
provide default values for arguments added to the end of
the argument list, but beyond that you have to go through
and update each place that calls the given method. Want
to add a new argument to the beginning of the argument
list? Want to change the order of the arguments? Want to
remove an argument? Get ready to click through a mass
of files, finding and fixing the newly broken code. If you
use the Change Method Signature dialog, SourceMate will
update all the calling code appropriately and leave your

code still fully functioning. This feature gives a developer
great power to go back and clean up their APIs after the
fact. No longer should developers feel that their function
signatures are cast in stone.

Refactoring: Disable trace() Statements
What it does: Removes or comments trace() statements
When to use it: After a debugging session or before
creating a production build

From the most misunderstood to the easy to
understand, the Disable trace() refactoring is as useful as
it is understandable. When debugging difficult problems,
developers often resort to littering their code with trace
statements. Sometimes these trace statements can be
placed in numerous files throughout the project. Once the
developer finally resolves the bug they likely need to remove
these trace statements. Does the developer remember
where each trace was added? Let SourceMate do it for you
and you’ll be sure all the errant trace statements are gone.
The Disable trace() refactoring can either remove the
statements completely from your code or, if you choose,
just comment them out. You then have the option through
the corresponding Enable trace() refactoring to turn them
back on. In your next debugging sessions, go ahead and
add trace() statements with abandon. SourceMate will help
you remove them in one click.

Conclusion
The power of these refactoring features should be evident.
Rather than typing in a mindless text editor, SourceMate’s
refactoring tools become your intelligent code collaborator.
SourceMate understands not just the characters you’re
typing, but your intentions. SourceMate intelligently
updates your code based on the knowledge of both what
you’re trying to do and the existing structure of your project.
The time saved by using these features can be huge. It’s
not uncommon to hear stories of one developer saving
over 3 hours by using just one automated refactoring.
Considering how valuable our time is as developers, we
should all strive to have a full set of automating refactoring
tools available to us. SourceMate is an indispensable aide
for every Flex and Flash developer.

Figure 5. Extract method

Figure 6. Change method signature

Figure 7. Disable trace() Statements

CHRIS GROSS

http://www.kindisoft.com

05/2010 (13)14 05/2010 (13) 15

Monetizing Your Cognitive Surplus
In a recent talk (http://blip.tv/play/gshVtNIUAg), author
Clay Shirkey discussed the concept of cognitive surplus.
The basic idea is that all the time we used to spend
watching Gilligan’s Island on TV (a one-way medium) is
now something we can harness for creative endeavors
via the two-way, participatory medium of the Internet.
That aggregate cognitive surplus is a vast resource
that has appeared out of nowhere and can be used to
achieve nearly anything. Some use that time to build
public works like Wikipedia or blog the depths of their
wisdom and experience to help place the knowledge of
mankind within everyone’s reach.

For those who happen to develop software for a
living and have creative minds and entrepreneurial
inclinations, that cognitive surplice can easily be
directed toward creating side-incomes from software
products created in their spare time.

But when we begin to think about what it would take
to control licensing of our software and keep it from
being cracked and redistributed for free, or see our
hard work stolen by a competitor with a decompiler,
the attractiveness of trying to produce and sell our own
software can quickly fade. Having been there, I’m here
to tell you it can be done.

In the Flex and AIR software development community,
there is much FUD (fear, uncertainty and doubt)
surrounding the related issues of code protection and
license control. When all you want to do is focus on
making your app the very best it can be, these questions
are pretty depressing. You know it will take a lot of time
to evaluate and implement something that will reliably
control and protect the fruit of all the hours of hard work
you’ll put in on your app.

While the quandary vexes developers in every
field, this article specifically focuses on Flex and AIR
developers and their options for monetizing some of
their cognitive surplus. Some of the big questions to be
answered along the way are:

• Just what the dangers and the options for mitigating
them?

• Are license control and code protection issues
that developers should attempt to build their own
solutions for?

• How reliable and secure are the off-the-shelf
options and what approaches do they use?

• Should these issues be handled by a single product
or multiple products?

• Once my product is ready to go, how do I sell and
market it?

Spy vs. Spy
It is easy enough to dismiss the risks to your intellectual
property as fringe hackers that won’t really impact your
potential business. In an online discussion I started in
preparation for writing this article, a well known and
respected industry blogger (who will remain nameless)
had this to say:

“I wouldn’t worry too much about it with Flex and
AIR apps. Have you ever decompiled them and sifted
through the pile of crap that is puked up by your
decompiler? Flash applications are a different story,
but the Flex compiler’s method of breaking down
MXML classes and all of the objects that are declared
within it into AS objects, essentially obfuscates the
code so much that it is nearly impossible to make sense
of it all.”

Even though I once held a similar view, I was a little
shocked by this statement, considering the source. It
completely marginalizes the issue. Developers who
make a living at it tend to be used to high-level code
that is readable and well organized. The internal code
of the Flex framework itself can at times be challenging
to understand, and the output of a decompiler can be
even more difficult to follow since comments and local
variable names are usually lost. So if a method is not
clearly documented with meaningful variable names,
these high-level developers dismiss it as unreadable
garbage.

But this brand of thinking doesn’t take into account the
large number of people who apparently have nothing
better to do with their time than write malware or crack
retail software for fun and profit. They cut their teeth
churning out bot-nets and viruses and build their net-
cred creating cracks or key generators for nearly every
licensed software product on the market; regardless of
the complexities involved.

The real secret to the cracker’s chances at owning
your app lies in the last statement made by the
commenter: “…it is nearly impossible to make sense
of it all.”

Overcoming FUD
Protecting, Licensing and Selling Adobe Flex & AIR Apps

http://blip.tv/play/gshVtNIUAg

05/2010 (13)14 05/2010 (13) 15

The point of this little trip down memory lane was: I
didn’t even have to understand the protection scheme or
the actual program in order to defeat the license control.
And I was a paying user, not a cracker! If you want to
monetize your app, you cannot afford to marginalize the
potential for your software to be cracked.

Aside from the software delivery methods, nothing has
really changed. Today, the landscape of code protection
and licensing still resembles a SPY vs. SPY cartoon.
The Black Hats and White Hats are pitted in an ongoing
struggle for code dominance. What does the playing
field look like?

BLACK HATS

Client Cracking
Decompilers exist that make it dirt simple to steal the
intellectual property of any compiled Flash movie (.swf),
including those created by Flex and AIR. This includes
the ability to create an editable source file which can
be modified to bypass any licensing scheme. As with
all products some are better than others, but the
cream of the crop gives the Black Hats power akin to
commanding the Death Star when it comes to cracking
your app.

Key Generation
Even if they don’t crack your client app, they can
approach the problem from a key generation tack.
Instead of trying to crack your app and patch it to
ignore licensing, they can try to generate keys that it
will accept as good. Thus it is important for the licensing
scheme not to rely on magical keys that are deemed
valid because they match the output of some secret
algorithm.

Server Hacking
If you use an activation server for licensing that returns
a yes/no response to whether your key is good, they
can often use techniques like host file redirection to
point the app to their own server which always says the
key is good. Or they can try to break into your activation
server and gain control of it. Obviously if there is a
server part, you are vulnerable to attack on both the
client and server side. And the more complicated the
server apparatus, the more exploits there are for it.

Key Sharing
Even with code protection in place, your license control
scheme must prevent people from easily sharing their
license keys. Surely there will always be a paying
audience for a product that offers good functionality,
support and upgrades at a reasonable cost, but will
that audience be large enough to offset the number

Newsflash: The cracker doesn’t have to unravel it all, just
key parts; specifically those that keep you from using it
for free.

I’ll give you a simple, first hand example. A long time
ago, back in the days when dinosaurs ruled the earth
and the 51” floppy was common, there was a very
popular spreadsheet program that was as easy to learn
as uno, dos, tres…

Anyway, they had a license control scheme that
forced you to put the original installation disk in the
floppy drive and hit enter each time you ran the
program, even though it was installed on your hard
drive. It read this key disk, presumably checking to
see if a certain sector had a certain value or something
along those lines. If any other disk than the key disk
was inserted (including an exact copy made using
sector copying nibblers), the program would exit to
DOS; otherwise it would proceed to the functionality.
Since the nibbler programs copied every sector and
bit, not just those allocated by the official file table,
the authors probably implemented a scheme that
expected not only key data but also certain errors to
be present on certain sectors. In some early copy-
protection schemes, the errors were introduced by
physically damaging a sector with a laser.

Whatever the actual scheme entailed, it was
obviously Quite Clever, and clearly a lot of effort had
been put into it. But it just bothered me that I had to drag
out the key disk every time. I’d paid for the software
but this step was a speed bump I didn’t care for. So I
decided to fix it. This was before the Internet added the
possibility of sharing the result widely with the world, so
morality didn’t enter into it; it was inconvenient and as a
competent developer, I figured I had the right to correct
the experience, at least for myself.

Defeating their system was really easy. From a 386
assembly program, there was only one way safe way to
Exit to DOS – Interrupt 21 / Function 4C. So I searched
the executable for that interrupt and function and found
only two instances; just what I would expect. One is the
program exiting when the key disk isn’t found; the other
is when the user chooses to exit from the file menu.

Comparing a hex dump of the executable code to the
processor’s opcode table, it was simple to see that one
of these interrupt calls was bounded by a subroutine
jump followed by conditionally proceeding to the exit
interrupt or jumping over the exit and into more unknown
code. Probably going off to the subroutine to check the
disk and then exiting or working based on the result.
So I simply made it jump over the exit regardless of the
return from the subroutine by poking in an unconditional
branch opcode with a hex editor and that’s all it took. It
looked for a disk, didn’t find one, and then brought up
the program.

05/2010 (13)16 05/2010 (13) 17

of people who choose to simply search the net for a
key and run the software for free? Many people will be
happy to share the key info with a friend if it is only a
big impersonal string of numbers that holds the magic.
If they must include personal information along with that
key for it to work, they’ll be less likely to share.

WHITE HATS

Securing the Client
Code protection products exist that combat decompilers
by obfuscating and/or encrypting the code they are
trying to steal. This process is inherently more difficult
and fraught with danger since by scrambling the actual
code enough to stump the decompiler or the reader
of its output; it is possible to negatively impact the
performance and reliability of the program you are
trying to protect. Again, some tools are more effective
than others at this task; some are nearly useless while
others can cause the decompiler itself to crash or fall
into a loop making it much harder if not impossible for
crackers to get the goods.

License Control
Combined with code protection, license control allows
you to reliably ensure that the application will only
run and enable the features that are associated with
the license issued. There are varying types of license
control, but almost all rely upon a server component,
or otherwise the application is highly susceptible to key
generation attacks. Some approaches combine license
control with code protection, some don’t. Some place
a lot of logic on the server and some don’t. As with any
system, the more complex the server component, the
more prone to attack it is. There are more potential
chinks in the armor. And beyond the threat of attack,
there is also reliability to be concerned with. Finally, it
is also important to consider the fees or percentages
associated with the use of the server component.

Options for Publishing Your Application
Let’s review your options as a company or individual
developer or looking to monetize a new Flex or AIR
application; from worst to best:

Forget it, it’s too much hassle
Sadly this will be the choice that many developers will
make. If the effort needed to build it and the cost and/or
additional effort needed to protect and control it reach a
certain threshold, it doesn’t seem reasonable to try and
tackle. Another good idea down the drain (at least until
someone with more funding and time thinks of it).

Build it and give it away as freeware or open source
When the desire and energy to build it is there, but the time
or inclination to protect and control it isn’t, many developers

will choose this route. At least the idea will see the light of
day, and perhaps if done well, it will be used by others.
It’s a very gratifying thing, knowing you’ve somehow
contributed to the greater good, but it doesn’t buy the baby
a new pair of shoes. While there is a remote possibility that
occasionally some people will take a moment to donate a
few bucks to your project fund, I wouldn’t hold my breath.

Build it and sell it without code protection or license
control
This is the honor system. It relies entirely on the
goodness of your fellow computer owner to pay you for
the download and not share it with anyone. The argument
for this approach is that if you put out a good product,
charge a reasonable price and offer great upgrade and
support options, and have a great marketing department,
you might make enough revenue to justify the effort. Of
course you must accept that anyone could easily snag
the decompiled source, remove any logos or copyright
messages and resell it or share the modified version.
If you found out about it, they’re probably in another
country, and there’s little you could do about it, short of
starting a legal battle with them. Good luck with that.

Build it, without code protection, but implementing
your own license control
Not that different from the previous option, since any
effort you put toward rolling your own license control
could still be defeated by decompilers. You’re still
relying mostly on people’s good will in paying for a
license, it’s just that you also have to spend a bunch of
time figuring out how your license control will work and
implementing it. Having done this myself, I can only say
beware, it’s more complex than you might think. It really
is more work than you want to attempt on your own, but
license control is still the simpler of the two issues.

Build it and sell it using off-the-shelf license control
and no code protection
While you still risk having your license control bypassed
by decompilers, at least you don’t have to waste any
time figuring out how to implement it. It gives you
control over your product to the extent that people who
play by the rules (or are at least sufficiently concerned
about viruses that they won’t run cracked software)
can choose different licensed experiences (such as
basic or premium functionality), depending on the
license control software. Different off-the-shelf license
control products use different approaches and charge
differently including one-time licensing fees, or even
annual and per license fees or percentages.

Build it and sell it using a combined license-control
and code-protection solution
Making sure you have both code protection as well
as license control is the only way you can build a

05/2010 (13)16 05/2010 (13) 17

business model around your Flex or AIR app that
doesn’t leak like a submarine with a screen door. But
while combining the licensing and code protection in
one product may seem attractive and even logical, the
fact is you’re tying two unrelated problems together
– the very opposite of the loose-coupling we seek with
object oriented programming. If the license control
part is great but the code protection is lousy (or visa
versa), then you’re married to both for better or for
worse. Migrating all of your license holders and their old
installations of your product to a new licensing scheme
may well be impossible, and you’re at the mercy of the
vendor to update their code protection to beat the latest
decompilers.

Build it and sell it using off-the-shelf
license control and off-the-shelf code protection
This is the approach that makes the most sense to
me. A license management solution need only fulfill a
particular scope of functionality. If it fits the way you
want to sell your app, then it doesn’t need to change
over time. If you’re satisfied with the way it lets you
manage your users, issue licenses and control your
software, then you want that to remain stable. If it’s
built right, license management doesn’t need new
features or rethinking of how the old ones work.
However, the business of code protection evolves
continuously. The Black Hats figure out the latest
obfuscation tricks the White Hats throw at them and
the decompilers and the obfuscators are updated to
cope.

Wash, rinse and repeat. This is why your virus
protection software has to be continually updated;
there are a flood of new viruses coming out all the
time. The same goes with code protection. Therefore,
it is something that inherently requires updating over
time and having the option to choose or switch to
the best code protection on the market at any time
(without loosing all the license holders you had signed
up already) is really important. If your code protection
vendor doesn’t keep up with the latest threats, his
competitor will. Thus a new code threat doesn’t upset
your sales and licensing process. You can switch your
code protection vendor at any time and simply re-
protect your code and redeploy or auto-update the app
your customers are running.

License Control Solutions
There are several solutions available to you today.
Some are only available for AIR. Some run their own
activation servers, thus taking on the onus of security
and uptime reliability for your license data. Some
charge a fee per license, some either don’t or are not
up front about their pricing scheme. Ultimately it isn’t
reasonable to provide a comparison table, since the
approaches are so different.

A combined License Control/Code Protection
solution, they operate their own activation servers
which your applications communicate with and they
can encrypt your software as well (although this
has been reportedly (http://www.codingforums.com/
showthread.php?t=195270) been cracked). They offer
a trial version for both Flex and AIR, but the details of
pricing and fees associated with the premium versions
are only available by talking to their sales staff.

Sharify by Luck Laboratories
 – http://www.sharify.it/
An AIR only solution, Sharify provides a library to
embed in your application and implements a one-time
registration scheme, where the user only has to be
online when they register the app (thus ruling out the
ability to remotely shut down a license that has been
compromised). They operate their own activation server
and your application interacts with their API by making
a call to their REST service. They charge a 3% fee on
each license you issue, and interestingly they collect
that fee by invoicing you monthly.

Shibuya by Adobe
 – http://labs.adobe.com/technologies/shibuya/
Still in a pre-release phase, Shibuya was announced at
Adobe Max in October 2009. The website doesn’t make
clear how their scheme works other than that they
are the payment vendor, you can see some analytics
and issue trial versions of your AIR apps. There is no
mention about how they get paid, if it is a percentage,
flat fee, recurring fee, or some combination thereof.
Currently you can sell your applications on the Adobe
AIR Marketplace.

Zarqon by Futurescale
 – http://zarqon.net
Rather than operate private activation servers (with
the attendant potential for hacking and downtime),
Zarqon stores its licenses in an encrypted format in
your own Amazon S3 account where you pay literally
pennies a month for storage. This means you control
the data and the oldest and most reliable cloud
storage provider on the Internet is protecting it and
serving your licenses. You administer licenses via a
desktop app, and embed a library in your product for
checking licenses. The unique system defeats license
key generation attacks and makes key sharing
highly unlikely. You can issue expiring trials, one-
time registration, or your app can check every time
it is run, allowing you to shut down abused licenses
remotely at any time. You purchase a onetime license
for use of the software. There are no other fees or
percentages on sales and you can sell your software
wherever you like.

http://www.nitrolm.com
http://www.codingforums.com/showthread.php?t=195270
http://www.codingforums.com/showthread.php?t=195270
http://www.sharify.it
http://labs.adobe.com/technologies/shibuya
http://zarqon.net

05/2010 (13)18 05/2010 (13) 19

Decompilers and Code Protection Solutions
You really have to see what you’re up against from the
decompilers in order to evaluate the effectiveness of the
available code protection solutions. Fortunately, the top
contenders on both sides of the fence offer fully functional
versions of their products for evaluation. You can truly
enlighten yourself by spending an afternoon downloading
the decompilers, testing them against your app and
seeing the results for yourself. Protect your app using any
of the available code protection solutions, then point the
decompilers at the result and see what happens.

The Leading Flash Decompilers
Trillix by Eltima Software – http://www.decompiler-

swf.com/
Sothink by SourceTec Software – http://

www.sothink.com/
I did quite a bit of research on the matter in order to

protect my own product (Zarqon) and to cut to the chase, I
found that Trillix is currently the best decompiler, but I was
still able to crash it using Kindisoft’s secureSWF. Honestly,
the other code protection solutions didn’t stand a chance
against Trillix. Far from generating unreadable garbage,
the Trillix Flash Decompiler does an unbelievable job of
getting the goods from an unprotected app.

For example below is some of the sensitive source
code from the Zarqon Flex Demo (http://futurescale.com/
v3/ZarqonFlexDemo/srcview/) and the same methods
as decompiled by Trillix. I would show you what Trillix
made of the obfuscated code, but it crashed when I tried
to decompile the swf see (Figure 1 and Figure 2).

As you can see, an unprotected Flex or AIR application
can be easily decompiled. The source code can be extracted
from the swf, saved, modified and recompiled into a
version with license control bypassed.

As the author of Zarqon, I’m really highlighting the
vulnerability of code licensed with my product here,
but my mission is to point out that you must have code
protection in addition to license control. And since the
state of the art for code protection is advancing all
the time, you need to decouple code protection from

license control so that you can zig when the bad guys
zag without loosing your license holder data.

The last thing I want is for a developer to purchase
my license control product, go to the effort of building
and selling their app only to be undermined by crackers
because the application was unprotected. Therefore, I
suggest combining Zarqon license control with a solid
code protection solution such as secureSWF, which I
use and endorse.

Leading Standalone Code Protection Solutions
secureSWF by Kindisoft – http://kindisoft.com/
SWF Protector by DCOMSoft – http://dcomsoft.com/
SWFEncrypt by Amayeta – http://amayeta.com/

I advocate testing all these products to see for yourself
how effective they are, but as I mentioned before, the
only one I was able to stump Trillix with was secureSWF.

All three products are run against your final swf and
obfuscate the compiled bytecode in different ways. The
thing that stands out about Kindisoft’s secureSWF is that
it provides 4 separate types of protection, each of which
has multiple levels of intensity for fine-grained control of
the final product. It even has the ability to change these
settings for individual class methods, so that you can
maximize protection while minimizing the obfuscation’s
impact on runtime behavior. And finally, you can encrypt
sensitive strings within the application such as credentials.
Basically you can put full-blast protection on, test your
app, and if there are problems, peel back the layers and
their settings until you get the right balance between
protection and performance. And recently secureSWF has
been integrated with Powerflasher’s FDT development
environment making the final step of code protection part
an integral part of the development process.

Your goal is to make the decompilers crash while still
producing a product that operates according to spec. As
tedious as this may sound, it really isn’t all that difficult
to do in practice with the advanced tools available.

Selling Your Application
So once you’ve decided on how you’ll do license control
and code protection, you have to figure out how to sell

Figure 1. Zarqon Flex Demo Source Figure 2. Unprotected Zarqon Flex Demo as Decompiled by Trillix

http://kindisoft.com
http://dcomsoft.com
http://www.decompiler-swf.SWFEncrypt
http://www.decompiler-swf.SWFEncrypt
http://www.decompiler-swf.SWFEncrypt
http://amayeta.com
http://I
http://www.sothink.com
http://futurescale.com/impactonruntimebehavior.Andfinally

05/2010 (13)18 05/2010 (13) 19

your product. How will you get your product into your
users’ hands and their payment into your bank account?
The mechanics of selling the software and issuing the
license will vary depending on the license control
software you use.

Zarqon makes it easy to add an in-application link
to your menu that takes you to your payment vendor’s
order management page, making it easy to sell
anywhere.

Leading Payment Vendors
Google Checkout – http://checkout.google.com/
Paypal – http://paypal.com
SWREG – http://www.swreg.org/
Cleverbridge – http://cleverbridge.com/

You could sell by mail order if you like, but in reality,
you need to be able to accept payment for your
application online. Each payment vendor has a
different approach to helping you sell your product,
but in the end, all vendors take a percentage of each
sale. Google and Paypal are neck and neck with their
pricing, and are acceptably low for the service they
provide. I chose Google because it’s easy to setup
and use, and because Paypal has a reputation (http:
//www.google.com/search?q=paypal+freezing+acco
unts) for freezing accounts too often for a variety of
reasons. Cleverbridge is attractive if you plan to have
a high volume of high-priced sales. They have affiliate
programs, partner cross-sell and tight integration with
your website. They also charge a fee for setting up
your cart and a higher percentage of each sale.

Marketing Your Application
Finally, you need to get the word out about your
application. Beyond blogging about it yourself, there are
a number of things you can do to get the party started.

Get Bloggers to Write About Your Product
Getting others excited enough to blog about your
product without paying them or giving them special
treatment can be a challenge. And some applications
will naturally be more tractable to getting bloggers
pecking away. If your product is simple and easy
enough to play around with for a few minutes you can
likely pull it off. If it is an extreme niche product requiring
more than a few minutes to get your head around and
try out, you might find it more difficult. So don’t get
discouraged if you don’t get a lot of advance blogging
about your product. Once it’s in the marketplace, and
users get their hands on it, they’ll eventually post about
their experiences good or bad.

For instance, with Zarqon, I discovered that license
control products are not so easy to solicit posts about
because it just isn’t that something you can test drive
by poking a few buttons, be amazed and toss off a post

about it. Although it is easy enough to build into your
app, you have to be working on an app or harboring an
idea you’d like to monetize or it’s just not that interesting.
Although there wasn’t much advance blogging about it,
users have good things to say (http://futurescale.com/
v3/blog/120-why-we-built-zarqon#IDComment7617156
1), though and that can be worth more than a solicited
review.

“I am so happy I found Zarqon! 6 months ago I was
desperately looking for an affordable, easy to implement,
scalable air licensing solution and it was a dead end.

I paused the development of my project – I had put a
lot of work and love into it and I did not want to give
it away for free, or be tied to a commission based license
scheme. I lost all hope and decided to give it up.

Just yesterday I accidentally discovered Zarqon. I
couldn’t believe my eyes! I tied it to my application within
minutes and it was working perfectly. A dream come true!
And when I saw the price... I was blown away! I was
expecting a price tag of $1000+

I bought it right away! As an independent & small
developer I need to thank you for developing this amazing
licensing tool.” – Konstantinos

However the more review-friendly Balsamiq Mockups
(http://balsamiq.com/blog/?p=198) product had
incredible success by sending out a simple email to
bloggers pointing them to the app, which they could
run, do some doodles with and immediately start telling
people about it. And Peldi, the founder of Balsamiq did
a great job of documenting his app’s rise to fame and all
the various tips and tricks he picked up on the way on
his company blog. It is an inspirational and instructive
read for any budding entrepreneur.

Issue a Press Release
There are a number of companies out there who can
help make sure that the appropriate media outlets
are aware of your product. Magazines and industry
blogs always have a news hole and they often fill it
with relevant press releases. You can track them down
and submit your press release directly or you can pay
a service to do it for you. Some of these services even
offer a free level that still ensures your message gets
out on the web to some top sites.

Leading PR Vendors
PRLog – http://www.prlog.org/pub
PR.com – http://www.pr.com/promote-your-business
PR9.net – http://www.pr9.net/press
IMNewsWatch – http://www.imnewswatch.com/Press

Release.php

http://checkout.google.com
http://paypal.com
http://www.swreg.org
http://cleverbridge.com
http://www.google.com/search?q=paypal+freezing+acco
http://futurescale.com/v3/blog/120-why-we-built-zarqon#IDComment76171561
http://futurescale.com/v3/blog/120-why-we-built-zarqon#IDComment76171561
http://futurescale.com/v3/blog/120-why-we-built-zarqon#IDComment76171561
http://balsamiq.com/blog/?p=198
http://www.prlog.org/pub
http://www.pr.com/promote-your-business
http://www.pr9.net/press
http://www.imnewswatch.com/Press

05/2010 (13)20

PRWeb – https://account.prweb.com/
i-NewsWire – http://www.i-newswire.com/
MarketWire – https://www.marketwire.com/mw/
PR Newswire – https://portal.prnewswire.com/

Run Advertisements
There are also quite a few options for advertising
out there. You can run text ads, graphic ads, even
interactive ads built with Flash. You can buy a slot on
a specific website, or you can run keyword ads that
appear in search results or on content sites deemed
relevant.

Zarqon also makes it easy for you to put a handy in-
application link to your ad vendor on your menu so that
you can easily access your ad campaigns.

Leading Ad Vendors
AdReady – http://www.adready.com/
AdBrite – http://www.adbrite.com/
BuySellAds – http://buysellads.com/
FaceBook Ads – http://www.facebook.com/ads/
Google AdWords – http://adwords.google.com/

Regardless of the ad vendor you chose, if you will
be making ad placements on specific websites, you
need a way of gauging the value of the target site.
The ad vendor may supply some amount of metrics
to help you decide on the right choices, but I found an
independent analysis tool to be pretty effective.

The free Website Value tool by Website Traffic Agents
correlates a number of metrics like Google page rank,
Alexa rank and others to assign a dollar value to the
input website. Just put the name of the website you’re
interested in at the end of the URL (Example valuation:
http://www.webtrafficagents.com/WebSiteValue/
puremvc.org):

Running this against the various websites you’re
interested in running ads on (or sending blogger pre-
release notice emails to) can give you a quick ranking
of the sites in your industry.

Conclusion
It can be blindingly simple to see your completed
world-shaking app in a single flash of insight. But then
you have to implement it, protect it, license it, market
it and sell it. It’s all those parts after the initial vision
that often keep developers from forging ahead and
making their dreams come to life. After all, you could
be playing Xbox with your cognitive surplus. But if
you’re still motivated to press on, it is well within your
reach to monetize your Flex and AIR apps and see the
hard work pay off.

My goal with Zarqon was to enable myself and others
to easily control the licensing of their applications. I
wanted the most secure and reliable cloud storage
without having to write and defend a server component.

I built it with the tacit understanding that it could be
broken. I took the initial stance that any lock can be
broken, so ignore that segment of the population and
focus on those who’ll pay money for a great product,
sold for a reasonable price and well supported. As time
wore on, this idea seemed increasingly naive to me.

It was only near the end of the project that I really
focused enough energy on the research into code
protection and the dangers of not using it. I realized
that although Zarqon itself might survive without code
protection due to its design which anticipated crackers
from the outset, the simple apps that I and others would
publish using Zarqon for license control could not make
the same assumption. If you just want to put out a great
app, license and sell it, you should be able to do so
and not worry that sales will fall to zero quickly because
the pirated version is available on all the popular warez
sites.

I discovered that the realm of code protection is huge
problem unto itself and best left to dedicated experts in
the field. Certainly not something for me to attempt to
add to Zarqon in order to compete with the feature list
of the one competitor that does bundle the two. In fact
I realized how important it was for the two issues to be
decoupled. With Zarqon and secureSWF, it is affordable
and easy to combine secure and reliable license control
with world class code protection and be ready to ship
your Flex or AIR app within the day.

The Zarqon Desktop Control Center AIR application
itself uses the Zarqon API for licensing and is protected
by secureSWF.

Within a month after finishing Zarqon, I had the bulk
of my next product (a simpler offering that targets a
much broader audience) built, license-controlled and
protected. It is in private testing now, but the process
of getting it out there will involve the same issues I’ve
described above, only it will be much simpler for having
gone through it once and not having to invent the
licensing.

I hope you’ll consider letting your next idea come to
life. Feel free to contact me if you’d like a hand with
making it happen.

CLIFF HALL
A Flex/AIR consultant for hire through his company
Futurescale and the author of the open source PureMVC
Framework (http://puremvc.org), he recently learned more
than he ever wanted to know about the necessity for code
protection when he created the Zarqon Active License Control
System (http://zarqon.net). His consuming hobby is making
music which he does through his recording project Sea of
Arrows (http://seaofarrows.com).
He can be reached via http://contact.futurescale.com

https://account.prweb.com
http://www.i-newswire.com
https://www.marketwire.com/mw
https://portal.prnewswire.com
http://www.adready.com
http://www.adbrite.com
http://buysellads.com
http://www.facebook.com/ads
http://adwords.google.com
http://www.webtrafficagents.com/WebSiteValue
http://puremvc.org
http://zarqon.net
http://seaofarrows.com
http://contact.futurescale.com

http://www.elementriver.com

22

IN BRIEF

05/2010 (13)

Adobe AIR Plug-In for Aptana Studio

Flash Player 10.1: Live and Ready
for Android
This month marks an exciting
milestone for Flash Player. On
Tuesday, June 22, Adobe announced
the availability of the shipping
version of Flash Player 10.1 for
mobile. The �nal release has been
posted to the Android Market. With
Andy Rubin’s announcement about
Android 2.2 („Froyo”) being released
as open source, adobe expects that
selected devices can be upgraded to
Froyo and can install Flash Player.This
release was a major undertaking to
get the same Flash Player to work
across various smartphones and
desktop operating systems and
browsers.

source: Adobe Flash Platform Blog

Tour de Flex 2.0 – Nearly 500 Flex
Examples!
Adobe has just launched the new
AIR 2 based Tour de Flex version 2.0
which now contains almost 500 Flex
examples! The new version has new
AIR 2 examples (only available in the
AIR version of Tour de Flex) including:
File Promises, Mass Storage Detection,
Native Process, Open with default
app, Socket Server. Also there are
some great examples of the new Flash
Player 10.1 and AIR 2 APIs including:
Gestures, Global Error Handler,
Globalization / Internationalization,
Microphone access.

source: Adobe Flash Platform Blog

Adobe AIR 2 SDK Now Available
for Download
After Adobe AIR 2 runtime came
available, the Adobe AIR 2 SDK is also
available for download!

The SDK and the Adobe AIR 2
documentation can be found on
adobe.com

source: Adobe Flash Platform Blog

Flash Camp Manchester

News selected by Gábor Csomák

Date: Thursday 8th July 2010
Time: 12-8pm
Venue: Manchester Metropolitan
University Business School, Aytoun
Street (Manchester City Centre)

Flash Camp Manchester is a free
event organised by the Midlands
Flash Platform User Group in
association with MMU Business
School. Over an afternoon and
evening, experts in Flash, Flex
and AIR will share their knowledge
through presentations and talks.
Come and meet some of the Adobe
team, professionals and community
leaders and network with developers
and designers. Whether you’re
just getting started with the Flash
Platform or consider yourself a pro,
there’s something for you.

Confirmed speaker sessions
include:

• Open Source Media Framework
– Edwin van Rijkom (Adobe OSMF
Development Team)

• Mobile User Experience –
Anthony& Jerome Ribot (Ribot)
• FDT as a development
environment – Michael Plank
(PowerFlasher Solutions)
• PowerFlasher are also giving every
attendee a free full copy of FDT Pure
3.5
• Flash Player for Mobile Devices
– Mark Doherty (Adobe Flash
Platform Evangelist)
• Flex 4, Spark components&
Flash Builder 4 – Mike Jones
(Adobe Flash Platform Evangelist)
• PaperVision 3D – Seb Lee-Delisle
(Plug-in Media)

For more information visit http:
//flashmidlands.com/flashcamp/
manchester.html or to book your
place on-line go to http://flashcampm
anchester.eventbrite.com/

Further enquiries please contact
Trevor Ward on 07973 923494 or
email
trevor@flashmidlands.com

Aptana, in partnership with Adobe,
released the Adobe AIR Plug-In for
Aptana Studio. The updated version
of the plug-in allows JavaScript
developers to easily build rich, out-of-
browser applications powered by the
latest capabilities availabilities in AIR 2.
The plug-in includes advanced support
for debugging, profiling, code hinting
and more. For instructions on how to
install the plug-in, see aptana.com

Flash developer Grant Skinner
recently published two very
impressive experiments using
Adobe AIR and Android. In his first
experiment, he built a wireless
slot car gas pedal. In his second
experiment, he built a multi-screen
game called Androideroids that,
well, must be seen to be believed.
You can see them on gskinner.com

Serge Jespers not only posted
a video tutorial demonstrating how

to create native installers in AIR
2, he built an application using
AIR that helps you package your
native installers. The application is
called Package Assistant Pro and is
currently available for download. If
interested, go to webkitchen.be

Adobe recently released the 1.0
version of the Open Source Media
Framework (OSMF). This framework
simplifies the development of media
players by allowing developers to
assemble components to create high-
quality, full-featured video playback
experiences in Flash Player or Adobe
AIR. The framework is now available
for download. There are also many
resources for developers interested in
getting started with OSMF.

Tour de ColdFusion is in beta
stage. More info available on
tourdecf.adobe.com

Source: Adobe Flash Platform Blog

http://flashcampm
mailto:trevor@flashmidlands.com

http://www.gamersafe.com

05/2010 (13)24

APPS Getting start to develop Android apps with Adobe AIR

05/2010 (13) 25

But Adobe didn’t stop creating tools for
development of other mobile platforms.
Since mobile platform are the future of web

development, Adobe has just released the tools for
developing apps on Android devices – AIR for Android.

The Anroid platform is a rising star of future mobile
platforms. At the time i wrote this article, about 60
thousand Anroid apps were listed in the Android
Market.

So, the development of Android apps is becoming
more important to developers. And Adobe has started
helping developers enter this platform with the AIR for
Android. That means, we can develop Android apps
using Flash platform – Flash CS5 or Flash Builder.

In this article, you will learn the necessary steps to
start developing Android Apps by using Air for Android.
I will focus on using the AIR for Android Extension for
Flash CS5. If you are interested in developing using.
FlashBuilder, you can visit the Adobe Prerelease
Program site for more information.

Tools
In order to start development with AIR for Android, we
need the following tools.

Adobe Flash CS5
Adobe newest tool for creating Flash Platform content.

You can download the trial version from Adobe’s
website if you haven’t upgrade to this version yet.

Android SDK
The SDK for Android plaltform development. We need
the emulator included in the SDK for testing our apps.

Getting Started

In recent months, the Adobe-Apple war was ongoing.
Apple has blocked Flash entirely from iPhone OS. No Flash
on browser and no Flash on apps development. Adobe has
stopped developing the iPhone export feature in the new
Flash CS5.

What you will learn…
• Setup Android Emulator in Mac/Windows
• Basic steps for developing Android Apps with Adobe AIR

What you should know…
• Basic ActionScript
• Basic usage of Flash CS5
• Working with command line in Mac or Windows

to develop Android apps with Adobe AIR

Figure 1. Android SDK

05/2010 (13)24

APPS Getting start to develop Android apps with Adobe AIR

05/2010 (13) 25

Preparation

A. Install the AIR for Android Extension for Flash
CS 5
To install, simply double click on the downloaded mxp
and the extension will install via extension manager.

B. Install Android SDK and setup Android Virtual
Devices Emulator
First, you need to install the Android SDK for transfer the
apps to Android device. Also, you may want to test your
apps with the Android emulator included in the SDK.
You can download the latest Android SDK at http://
developer.android.com/sdk. To install the SDK, simply

You can download it at http://developer.android.com/
sdk/.

AIR for Android Prerelease Extension
The extension for Adobe Flash CS5 for developing
Android apps. It will add the feature for exporting Flash
content to Android devices. You can download it at
prerelease.adobe.com.

AIR for Android Runtime
The runtime which is necessary for running
apps in Android. You can download it at
prerelease.adobe.com.

Android device
The Android device must be running Android OS 2.1
(Eclair) or 2.2 (Froyo).

Figure 2. Android SDK and AVD Manager

Figure 3. Install SDK API

Figure 4. Start adding Virtual Device

Figure 5. Setup a new Virtual Device

Figure 6. Virtual Device Ready

http://developer.android.com/sdk
http://developer.android.com/sdk
http://developer.android.com

05/2010 (13)26

APPS Getting start to develop Android apps with Adobe AIR

05/2010 (13) 27

unpack the starter package to a safe location and then
add the location to your PATH.

Setup Android Virtual Devices Emulator
1. Launch the Android SDK and AVD Manager

application:

• In Windows, run the SDK Setup.exe file, at the root of
the Android SDK directory.

• In MacOS, run the android application, in the tools
subdirectory of the Android SDK directory see
(Figure 1).

2. Select the Settings page and select the Force

https://......// option see (Figure 2).
3. Select the Available Packages page. You should
see a list of available Android SDKs.
4. Select the SDK Platform Android 2.2 (or if you want

to develop on a Android 2.1 device, you can select 2.1)
and click the Install Selected button see (Figure 3).

5. Select the VirtualDevices page and click the New
button see (Figure 4).

6. Fill in the necessary setting shown below. In the
skin option, you may select different screen resolutions
according to your target device. HVGA (640×240) or
WVGA800 (800x480) see (Figure 5).

7. Click the Create AVD button. And a Virtual Device
is created.

8. Now you can launch the new Virtual Device by
clicking the Start button see (Figure 6).

9. Launching the Virtual Device may take about a
minute. After the virtual device is launched successfully,
you will see the virtual device like screen shot below
see (Figure 7).

Install Adobe AIR Runtime for Android on the
Virtual Devices
To install the runtime, simply put the apk in webserver
which can accessed by any browser or send the apk via
email and get it from email within the Virtual Devices.

After downloading the apk, the Android OS will prompt
for installation. Follow the steps on screen and finish the
installation.

Alternatively, you can install the apk via ADB tools.
First, make sure the USB Debugging option is enabled in
your Android device. Connect the device via USB or start
Virtual Device if you using emulator see (Figure 8).

Figure 9. Create a new �le from Flash CS5

Figure 10. Template for Android

Figure 7. Android Emulator

Figure 8. Enable USB debugging

05/2010 (13)26

APPS Getting start to develop Android apps with Adobe AIR

05/2010 (13) 27

Launch Command (Windows) or Terminal (MacOS).
Run the command below to

adb install pathToRuntime/Runtime.apk

Install the AIR runtime, if you have not already done
so, using the ADB install command:

For more information about ADB tool, see http://
developer.android.com/guide/developing/tools/
adb.html for ADB documentation on the Android
Developers website.

Start building your first Android app by Air
Now, we start developing our first hello world Android
app.

1. Launch Flash Profressional CS5. Create a new
document.

From the Home screen, you can click the link Air for
Android to create an AIR for Android application see
(Figure 9).

Or, You can select menu>edit>new to open a new
document. From the new document dialog, select the
Templates section tab. You will find a category Air for
Android (You may check your installation of the .zxp if
you can’t find this option).

Select it and you will find the 480x800 Android
templates. This will create a project with with dimension
480x800px and 24 fps. You can change the dimension
in the document setting if you want to develop in a
different resolution. (Remark: The content will scale
to fit the screen if the target device has a different
resolution) see (Figure 10).

2. Now, you can create the app inside the Flash
authoring tool like any normal Flash project. You can
add animation, components or ActionScript. I create a

Figure 11. Create animation and content like normal Flash

Figure 12. Select „AIR ANdroid Settings” Figure 13. Output setting for Android apps

http://developer.android.com/guide/developing/tools
http://developer.android.com/guide/developing/tools

05/2010 (13)28

APPS

05/2010 (13) 29

timeline animation and include a button component to
demo the capacities of using original Flash content.

3. After finishing creating the Flash content, we going
to publish it to Android.

Open the AIR Android Settings via menu>file>AIR
Android Settings see (Figure 12).

In the General tab, you will set the basic settings for
the Android app see (Figure 13).

OutputFile: The output filename of the Android app.
Should end with .apk.
Appname: The name of the app. It also sets the icon

caption.
AppID: The unity name of the app.

Version: The version of the app.
Aspectratio: The orientation of your app when

developed. Can be Portrait or Landscape.
Fullscreen: Enable it if you want the app to run in

fullscreen (i.e. no notification bar)
Auto orientation: Enable it if you want your app to

automatic resize the view when the device change
orientation.

Include files: Additional files included with the built
apk. If you have additional resources which need to
loaded, you can include them by clicking the add icon.

In the Development tab, you will set the options for
development see (Figure 14).

Certificate: Each Android app needs to sign with
a certificate. This option specifies the certificate file
for signing the app. if you didn’t want to purchase a
certificate from a valid certificate provider, you can
generate the certificate by clicking the Create button
see (Figure 15).

Android Development type: The type of generated
apk, Release or Debug. If you want to do debugging
with the device, you need to select Debug.

After Publish: The action to take after publishing.
Normally, we have to take both options.

Optional, you can specify the icon use for the Android
apps. You can prepare 3 icons for resolution 36px,48px
and 72px and the icon supporting png format see
(Figure 16).

Figure 16. Setup Android apps icon

Figure 14. Development settings

Figure 15. Create cert for signing Android app

05/2010 (13)28

APPS

05/2010 (13) 29

4. Now, you can click the Publish button to generate
the apk file and install the apk file to the Android
device.

And the app should start automatically. Else, you can
start the app from the program drawer of Android OS
see (Figure 17).

Alternatively, you can manually transfer the apk file to
Android System. Simply put the apk in webserver which
can be accessed by any browser or send the apk via
email and get it from email within the Virtual Devices.

After download the apk, the Android OS will prompt
for installation. Follow the steps on screen and finish
the installation.

5. After thought: Adobe made a such great tool for
developers to step into mobile app development. It is a
great start on the future trend of mobile development.
Flash is a great tool for developing multimedia projects
and has a bright future on mobile platform development.
It can speed up the process of mobile app development.
Also, there exists thousands of ready-to-use libraries
for developing with AS3. Developers and designers
can really focus on creativity rather than learning a new
language.

WILLIAM TSANG
William Tsang is the Chief Developer of Digicrafts. Digicrafts
is a leading solution provider of Adobe Flash Platform. http://
digicrafts.com.hk/components

Figure 17. App created by Flash run on Android

Resources
• Adobe Prerelease Program – https://prerelease.adobe.com/
• Android Developer – http://developer.android.com/

https://prerelease.adobe.com
http://developer.android.com
http://digicrafts.com.hk/components
http://digicrafts.com.hk/components
http://www.flexer.info

05/2010 (13)30

GAMES Preparing a Robot to Play FarmVille Automatically

05/2010 (13) 31

These actions (acquiring seedlings, planting and
harvesting them) are repeated in the course of
the game, rewarding the player with coins.

In the next part, I will explain how to prepare a robot
which will perform these actions automatically.

To prepare the robot we have to know what goes on
behind the scenes when the actions are performed.

The game consists of two parts: the client’s side
(written in ActionScript 3) and the server side (written
in php). The data is sent and received in amf format.

This architecture allows sending and receiving complex
objects.

Explanation of Robot’s Code
You can download the robot’s original code here: http://
ffdmag.com/system/files/files/410/original/FarmVille.rar

The robot is a Flash application written in ActionScript
3. The user interface consists of one button and a status
bar. Pressing the button starts the robot which logs into
the Facebook game page (the user name and password

Preparing a Robot

FarmVille is the most popular game on Facebook. The
purpose of the game is to establish a flourishing farm. In
the course of the game the player acquires seedlings, plants
them, and later harvests them. If the player fails to harvest
on time, the seedlings rot and the player receives no coins
for them.

What you will learn…
• how the game client communicates with the server
• how the server identi�es the player who made each request
• explanation of the game client �ash vars list

What you should know…
• The robot is written in ActionScript 3
• familiar with classes in �ash.net.* package such as

NetConnection, URLLoader and URLRequest

to Play FarmVille Automatically

Figure 1. The two images are displayed in a chronological order, �rst the seedlings grow (left image), then they are harvested and re-
planted (right image). the robot is doing all the actions without the player doing anything, in the upper-part of the right image, the coins
number raised from 5,057 to 7,387

05/2010 (13)30

GAMES Preparing a Robot to Play FarmVille Automatically

05/2010 (13) 31

Facebook it is important to choose the option “automatic
login next time” for the Cookie file to be saved on the

computer). The messages sent from the game
to the server include data from the Flash Vars
variables (variables which are defined in SWF-file
loading code and which the SWF file can use).

You can reach all of the Flash Vars variables by
loading several HTML pages in a certain order,
the same pages which would have been loaded
by the player if he opened the game with the
browser see (Figure 2).

Details of Flash Vars Variables

• flashRevision – the game version
• token – player’s current session identifier
• fb _ sig _ time – one of the variables which
Facebook transmits to every application opened in it
• master _ id – the ID number of the Facebook
user
• app _ url – the server-side address in the
game, where all messages are sent during the
game

Besides these variables, there is also the
g _ world variable. This variable is defined in
JavaScript code on the HTML page where
the Flash Vars are located and it includes
information on every object in the farm (like
seedlings, trees, and animals). The variable
value g _ world is encoded in Base64, so that you
need to convert the encoded string into an array
of objects see (Figure 3).

After converting the string into an array of
objects, you can go over every object, check its
condition, and perform an automatic action, if
necessary.

For example: if the object is a vacant garden
bed, you can plant a seedling in it, and if the
object is a seedling, you can check if it can be
harvested, and if yes, send a message about it to
the server see (Figure 4).

Every message sent to the server includes
a signature object. This object allows the
server to know who performed the request. The
signature object includes the Flash Vars variables
see (Figure 5).

to the Facebook site are taken from a Cookie file which
is saved on the computer, so that when logging into

ELAD COHEN
Elad Cohen, the chief programmer of
www.GammonShark.com and one-on-one game
platform. In the past, Elad served in the Mamram (IDF’s
computing unit) and received certi�cates of excellence
and recognition.
Contact details: elad@GammonShark.com

Figure 2. Creating a group of requests in a speci�ed order to get the �ash vars list

Figure 3. Creating an objects array that includes all the elements in the farm
based on the g_world variable

Figure 4. checking the current state of a Plot and then sending a request to
the server accordingly

Figure 5. Creating the object which is sent in every request to the server and
allows the server to identify the player who made the request

http://www.GammonShark.com
mailto:elad@GammonShark.com

05/2010 (13)32

ACTIONSCRIPT DEVELOPMENT Fluid Layouts with ActionScript 3.0

05/2010 (13) 33

You’ve probably seen some really awesome sites
out there that utilize all the real estate the browser
has to offer. You might have even noticed that if

you resize your browser window, that the content inside
reacts or adjusts to that action. In this article you’ll learn
how to create a SWF that will utilize 100% of the browser
and responds to the browser being resized.

Getting Started
First things first. Create a new folder called>Full-Screen
anywhere on your machine. Open up Flex Builder and
create a new ActionScript project. For project name
field, type>Main and place the project into your newly
created folder. We’re going to use Tweener (http:
//code.google.com/p/tweener/) for this project. To use
any resource we’ll need to add the folder to our source
path. Click next>Add Folder>Browse to the Tweener
folder>Click choose>Click OK>Finally, click finish. Your
project should now be setup. Let the coding begin!

Creating the background
We’re going to create a seamless background
from a bitmap that we’re going to load in. If you’ve
downloaded the source files that accompany this article
you’ll find preview.jpg in the src folder. Copy and paste
that image into your src folder. Then add these three
private properties to the class.

The _bgImage property is data typed to BitmapData and
will be used to draw the seamless background. _overlay

will be used to draw a gradient over the seamless
background to give it some color. Finally _loader is the
property that will be loading in our bitmap.

Now that we have our properties established lets add
the code to actually create the background. Copy and
paste the code from Listing 2 and I’ll explain what’s
going on (comments are removed).

The init() method is where everything starts. We first
declare a variable that stores the path to the image.
Then we instantiate _loader and pass in path to the
begin loading the image.

The imageComplete() method is executed once the
image has been completely loaded. When this method
is called, we instantiate _bgImage and call the draw()
method of the BitmapData class. The draw() method
draws the source display object onto the bitmap image
(http://www.adobe.com/). Next we call two methods,
drawBackground() and drawOverlay().

The drawBackground() doesn’t do anything besides
calling beginBitmapFIll() on this object. We pass in the
BitmapData object _bgImage to the method and draw
a rectangle to the stage width and stage height. We

Fluid Layouts

With the emergence of HTML 5, Flash sites might start
seeming like a thing of the past. I still see value in creating
all out sites that use Flash. In this article you will learn how
create a SWF that fills 100% of your browser and responds
to the browser being resized.

What you will learn…
• How to setup your SWF for full screen
• How to handle browser resizing – Event.RESIZE

What you should know…
• How to setup a new project in Flex Builder 3
• Familiar with general AS3 programming concepts
• How to add a SWF to a HTML page

with ActionScript 3.0

Listing 1. Class properties

private var _bgImage:BitmapData;

private var _overlay:Shape;

private var _loader:Loader;

http://www.adobe.com

05/2010 (13)32

ACTIONSCRIPT DEVELOPMENT Fluid Layouts with ActionScript 3.0

05/2010 (13) 33

the method. Finally, we instantiate _overlay. Then draw
a radial gradient over the tiled background and set the
blend mode of the shape to multiply (see Figure 2).

Setting up the stage
At this point we have our background created. Everything
is looking great. If you haven’t tried to already resize the
window. You might see something like Figure 3. Not
really appealing if you ask me. Let’s fix that now.

finish by calling the endFill() method. Important: The fill
won’t be rendered without the call to endFill() method.

Here’s what the compiled file will look like before we
call the drawOverlay() method (see Figure 1).

The drawOverlay() method adds a nice gradient over the
tiled background. We start this method off by creating
three variables – colors, alphas, and ratios. Next we
create the matrix object and call createGradientBox().
Passing in the current width and height of the stage to

Listing 2. Background creation methods

public function Main()

{

 init ();

}

private function init ():void

{

 var path:String = "preview.jpg";

 _loader = new Loader ();

_loader.contentLoaderInfo.addEventListener (Event.COMPLETE, imageComplete, false, 0, true);

 _loader.load (new URLRequest (path));

}

private function imageComplete (e:Event):void

{

 _bgImage = new BitmapData (_loader.width, _loader.height);

 _bgImage.draw (_loader);

 drawBackground ();

 drawOverlay ();

 _loader.contentLoaderInfo.removeEventListener (Event.COMPLETE, imageComplete);

 _loader.unload ();

 _loader = null;

}

private function drawBackground ():void

{

 this.graphics.beginBitmapFill (_bgImage);

 this.graphics.drawRect (0, 0, stage.stageWidth, stage.stageHeight);

 this.graphics.endFill ();

}

private function drawOverlay ():void

{

 var colors:Array = [0x003465, 0x000F1D];

 var alphas:Array = [1, 1];

 var ratios:Array = [0, 255];

 var matrix:Matrix = new Matrix ();

 matrix.createGradientBox (stage.stageWidth, stage.stageHeight);

 _overlay = new Shape ();

 _overlay.graphics.beginGradientFill (GradientType.RADIAL, colors, alphas, ratios, matrix);

 _overlay.graphics.drawRect (0, 0, stage.stageWidth, stage.stageHeight);

 _overlay.graphics.endFill ();

 addChildAt (_overlay, 0);

 _overlay.blendMode = BlendMode.MULTIPLY;

}

05/2010 (13)34

ACTIONSCRIPT DEVELOPMENT Fluid Layouts with ActionScript 3.0

05/2010 (13) 35

Head back to the init() method and add the following
lines of code from Listing 3. And add the code from
Listing 4 after drawOverlay(); We need to stop the
content inside the SWF from scaling when the window
is resized. Setting the scale mode of the stage to NO_
SCALE does exactly that. We then align the content of the
SWF to the top left corner. Next we register the stage for
the Event.RESIZE event.

Event.RESIZE is an event that is triggered each time the
browser or Flash Player is resized. It must be registered
with the stage in order to function. In all fluid layouts this
event is used to retrieve the new width and height of the
stage and then use these two values to reposition or
scale the objects on stage accordingly.

Every time the RESIZE event is dispatched the
stageResize method is called. In this method we set
the width of _overlay to the width of the stage. We also
set the height of _overlay to the height of the stage.
Next we call the drawBackground() method again. This
redraws the background every time the window is
resized. Test the application again and resize the

window. Everything is working like it should. The
window stretches the overlay and redraws the tiled
background (see Figure 4).

Animated Repositioning
Creating and redrawing a background isn’t the only thing
you can do with Event.RESIZE. What if you had a content box
that you wanted to be centered on screen? When the user
resizes the window you just don’t want the box to be stuck
in the middle, you want it to animate. No problem. Add the
following property to the class (under the other 3).

private var _container:Sprite;

Next add the following block of code under the
stageResize() method (Listing 5).

Finally call createContainer() inside imageComplete() and
call repositionContainer from stageResize().

The previous code is pretty straightforward. We
create a new property called _container and data type
it to Sprite.

Figure 1. The tiled background that was created with the
drawBackground() method

Figure 2. The fully created background Figure 3. The window being resized without setting the stage up

Listing 3. Setup the stage

stage.scaleMode = StageScaleMode.NO_SCALE;

stage.align = StageAlign.TOP_LEFT;

stage.addEventListener (Event.RESIZE, stageResize,

false, 0, true);

Listing 4. The stageResize () method that handles Event.RESIZE

 private function stageResize (e:Event):void

{

 _overlay.width = stage.stageWidth;

 _overlay.height = stage.stageHeight;

drawBackground ();

}

05/2010 (13)34

ACTIONSCRIPT DEVELOPMENT Fluid Layouts with ActionScript 3.0

05/2010 (13) 35

We then create a method called createContainer(). This
method draws a rectangle with a white stroke and see
through background. We then center it on screen. Finally
we call the method from the imageComplete() method. Next
we create a method called repositionContainer(). This
method creates two variables; one for the new x center
point and one for the new y center point. We then create
a call to Tweener and pass those two variables in. Now
the container animates to the center of the screen when
the window is resized.

If you don’t call repositionContainer() from within
stageResize(), the box will be stuck in position (see
Figure 5). Figure 6 shows how everything should
look.

That wraps up this article. Be sure to download the
source files. The code is fully commented.

I like to close these articles with a challenge. Can
you think of a way to make the background image
changeable? Right now the image is coded in such
a way that it can’t be changed. Sure you can go ahead
and add a new image to the directory with the same
name but what fun is that. If anyone has an idea for
another article or has a general question, please email
me at codedbyryan@gmail.com.

Figure 4. No problems now! The stage is now set

Listing 5. Container creation methods

private function createContainer ():void

{

 _container = new Sprite ();

 _container.graphics.lineStyle (3, 0xFFFFFF);

 _container.graphics.beginFill (0x000F1D, 0.25);

 _container.graphics.drawRect (0, 0, 250, 300);

 _container.graphics.endFill ();

 _container.x = (stage.stageWidth – _container.width) / 2;

 _container.y = (stage.stageHeight – _container.height) / 2;

 addChild (_container);

}

private function repositionContainer ():void

{

 var newX:Number = (stage.stageWidth – _container.width) / 2;

 var newY:Number = (stage.stageHeight – _container.height) / 2;

 Tweener.addTween (_container, {x:newX, y:newY, time:1,

transition:"easeInOutQuart"});

}

RYAN D’AGOSTINO
Ryan D’Agostino is an Interactive Developer at NAS
Recruitment Communications in Cleveland, OH, part-time
instructor at Virginia Marti College of Art and Design in
Lakewood, Ohio, and freelance designer and ActionScript
developer. For more information about Ryan please visit
http://www.codedbyryan.com/

Figure 5. Adding a display object but not setting it to reposition

Figure 6. Setting the display object to reposition

mailto:codedbyryan@gmail.com
http://www.codedbyryan.com

05/2010 (13)36

FLEX Flex 4 – The Problem With Children

05/2010 (13) 37

Flex 4 introduces a whole new set of Spark
containers which have the rather interesting
and, at times, problematic ability to contain

or be contained by the Flex 3-style MX containers.
I say problematic due to the fact that Spark containers
and MX containers are fundamentally different from
one another. Each MX Container descends from the
Container class, its contents are called its children and
its parent is the Container that contains it. For example,
if an MX Canvas contains an MX Panel, then the
Canvas is the parent of the Panel and the Panel is the
child of the Canvas.

Spark containers don’t descend from the Container
class, their parents are not necessarily the containers
which contain them and their contents are called
elements rather than children. When you want to

access the elements inside a Spark container you
need to use a different set of methods than when
accessing the children inside MX containers. And if
that sounds confusing, things get even trickier when
your application contains a mix of both MX and Spark
containers. A small example may help to illustrate the
problem.

Parents...
Let’s assume you create a Flex 4 application. You
put a Spark panel inside an MX Panel. You want to
find all the parents of the Spark panel so you also
add a TextArea and a button. You then write a simple
method, showAllParents(), to display the parent of the
Spark panel and all its parents until there are no more
parents to be displayed. The code is shown in Listing 1.

Flex 4

Flex 4 containers are not close relatives of Flex 3 Containers.
If you want to avoid family feuds, you need to take care of
the children. In this article, we’ll find out how.

What you will learn…
• Some important features of the Flex 4 class library
• How use MX and Spark Containers in the same application
• How to avoid problems when manipulating children at

runtime

What you should know…
• You need a solid understanding of Flex 3 and its classes
• You should be familiar with parent/child relationships of

Containers
• Some familiarity with Flex 4 would be an advantage

The Problem With Children

Figure 1. When a Spark Panel is inside an MX Panel, its parent is the
MX panel

Figure 2. But when an MX Panel is inside a Spark Panel its parent is
a Group object!

05/2010 (13)36

FLEX Flex 4 – The Problem With Children

05/2010 (13) 37

programmer you will be aware of the fact that most
of the MX methods aimed at handling children of
containers are defined way up the Flash hierarchy in
the DisplayObjectContainer class. All Flex UIComponent
classes descend from DisplayObjectContainer. This is the
line of descent of the MX Container class:

Container->UIComponent->FlexSprite->Sprite-

>DisplayObjectContainer

And these are the lines of descent of the Spark
containers:

Group->GroupBase->UIComponent->FlexSprite->Sprite-

>DisplayObjectContainer

SkinnableContainer->SkinnableContainerBase-

>SkinnableComponent->UIComponent-

>FlexSprite->Sprite->DisplayObjectContainer

Given the fact that all children inherit the methods of
their ancestors, it must be the case that Spark Groups
and SkinnableContainers implement the standard
child methods such as addChild() and removeChild()
in addition to the new methods such as addElement()
and removeElement(). You can verify this by looking at
the code of SkinnableComponent in the Flex 4 SDK. All
the default child-related methods are overridden. The
overridden code has the sole function of throwing an
error. Here, for example, is SkinnableComponent’s version
of addChild():

override public function addChild(child:DisplayObject):

DisplayObject

{

 throw(new Error(resourceManager.getString("compo

nents", "addChildError")));

}

When you click the button (Figure 1), you will see that
the first parent found is the MX Panel, mx.containers::
Panel. Nothing surprising here, then!

However, now let’s suppose that you rewrite the
MXML so that the MX panel is inside the Spark
Panel (Listing 2) and you recode the button1_click()
function to call showAllParents(mxPanel). This time you
will find that the first parent found is not (as you might
expect) the Spark Panel containing the MX Panel. It
is, in fact, a Group object. What’s more there are four
levels of parent between the MX Panel and the Spark
panel that contains it – three of these are Groups and
one is a PanelSkin (Figure 2). Dealing with these
intermediate levels of parent objects poses some
special problems when manipulating Spark containers
in ActionScript and I’ll be looking at that topic in more
detail next month.

...and Children
Now let’s consider the other side of these relationships
– namely, a container’s children. Any controls placed
inside an MX container such as a Canvas or a Panel
must be descendents of UIComponent. They can be
manipulated in ActionScript using methods such as
addChild() and removeChild(), while the total number of
children is returned by the numChildren property.

However, the contents of a Spark container may either
be UIComponents or graphic objects such as Rect
and Ellipse. The methods used to manipulate these
are mostly similar to those used by an MX Container
apart from the fact that the Child or Children part of
the method name or property is replaced by Element
or Elements – for example, addElement(), removeElement()
and numElements. For a reference to equivalent methods
in MX and Spark containers, see Table 1.

There is one extra complication you need to bear
in mind. If you are an experienced Flex or Flash

Table 1.

Spark container MX container Description
numElements numChildren Number of children the container.

addElement() addChild() Adds a child to the container as the last child.

addElementAt() addChildAt() Add a child at a speci�c index in the container.

 getChildren() Returns an Array containing all children.

getElementAt() getChildAt() Return a child at the speci�ed index.

 getChildByName() Return a child with the speci�ed id.

getElementIndex() getChildIndex() Returns the index of a child.

removeAllElements() removeAllChildren() Removes all container children.

removeElement() removeChild() Remove the �rst child.

removeElementAt() removeChildAt() Remove the child at the speci�ed index

setElementIndex() setChildIndex() Set the index of a child.

swapElements() swapChildren() Swap the indexes of two children

swapElementsAt() swapChildrenAt() Swap the indexes of two children.

05/2010 (13)38

FLEX Flex 4 – The Problem With Children

05/2010 (13) 39

In effect, the Spark container classes are removing
behaviour that was defined by their ancestor classes.
They can’t literally remove those methods so they
reimplement them to make them unusable. This is, it has
to be said, rather a surprising thing to do. Normally, you
would expect any class whose ancestors provide fully
functional methods to provide the same fully functional
methods themselves. The important thing to bear in mind
is that while Spark containers cannot make use of the
various child manipulation methods, those methods are

available to be called. As a consequence, it is legitimate
to use a Spark container’s child-handling methods in
your code and your program will compile. However, if you
then try call those methods, this will result in an error. I’ll
explain shortly a way of avoiding these problems.

Handling Children At Runtime
If your application’s interface is fully defined at design-
time and will never change at runtime, it is sufficient
to take care to use the right methods for each type of

Listing 1. Find the Parent of a Spark Panel

<?xml version="1.0" encoding="utf-8"?>

 <s:Application height="400" width="800"

 xmlns:fx="http://ns.adobe.com/mxml/2009"

 xmlns:mx="library://ns.adobe.com/flex/mx"

 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>

 <![CDATA[

 import mx.core.UIComponent;

 import flash.display.DisplayObjectContainer;

 import mx.collections.ArrayCollection;

 private function showAllParents (aCtrl:UIComponent):void {

 var aParent:DisplayObjectContainer;

 if (aCtrl != null) {

 aParent = aCtrl.parent;

 while (aParent != null) {

 ta.text += "\n" + getQualifiedClassName(aParent);

 aParent = aParent.parent;

 }

 }

 }

 private function button1_click ():void {

 showAllParents(sparkPanel);

 }

]]>

 </fx:Script>

 <mx:Panel height="300" id="mxPanel" layout="absolute" width="250" x="10" y="10">

 <s:Panel height="100" id="sparkPanel" width="150" x="10" y="10"/>

 </mx:Panel>

 <mx:TextArea height="330" id="ta" width="425" x="300" y="10"/>

 <mx:Button click="button1_click()" height="22"

 id="Button1" label="Show Parents"

 width="150" x="35" y="255"/>

</s:Application>

Listing 2. Find the Parent of an MX Panel

<s:Panel height="300" id="sparkPanel" width="250" x="10" y="10">

 <mx:Panel height="100" id="mxPanel" layout="absolute" width="150" x="10" y="10"/>

</s:Panel>

http://ns.adobe.com/mxml/2009

05/2010 (13)38

FLEX Flex 4 – The Problem With Children

05/2010 (13) 39

container. Any mistakes should show up quickly when
you compile or run your application. But if your code
manipulates components at runtime, potential errors
may not be so easy to spot. In fact, you probably won’t
know you’ve made a mistake until your program goes
unexpectedly wrong, quite possibly crashing. Say, for
example, you move a component into a container in
response to user interaction such as a button-click or
a mouse-drag. If your code tries to add the component
as a child of a Spark container or as an element of an
MX container, you are in trouble!

In Flex applications it is not unusual to manipulate
controls at runtime. My company’s Flash Platform IDE,
Amethyst, is an extreme example of this. At the heart
of Amethyst is a Flex application called the Amethyst
Designer, which allows users to create visual front-ends
for their Flex programs by dragging, dropping, moving
and resizing components. Every time components
are added, removed or dropped into a container, the
Amethyst Designer has to calculate a (sometimes quite
complex) series of parent/child relationships.

For most of the development of Amethyst over the
past couple of years, the Designer was written entirely
in Flex 3. When the time came to rewrite it to support
Flex 4 we faced a number of tricky problems. One of the
trickiest was finding a way of supporting MX and Spark in
the same design so that users could drag and drop any
control (MX or Spark) into any container (MX or Spark)
without the whole thing blowing up in their faces.

If you want to create Spark applications containing MX
controls that can be manipulated safely in ActionScript
you will face the same problems we did. Maybe I can
save you some time and trouble by explaining how we
solved these problems.

When a Container Is Not A Container
The first thing we did was to write some code to identify
the type of each container. MX containers are easy. They
all derive from the Container class. Spark containers,
however, may either derive from SkinnableContainer or
from Group. To categorize a container type you can
define a few constants and write a very simple method
to test the ancestry of a container passed to it as an
argument (Listing 3).

This makes it easy to test the container type before calling
either the Spark or the MX method required to manipulate
its elements or its children. At the simplest level you could
check if a Container is a SkinnableContainer or a Group
and, if so, call a method such as addElement(), otherwise
call the corresponding MX method such as addChild(). For
a slightly more complicated, and more flexible, example,
see Listing 4. This shows how you could test the precise
Spark class type (Group or SkinnableContainer) and even
deal with other class types if required. My getClassType()
method returns a Class object which may be a class of
some other type; this Class can be used to create objects
of the actual class type. Using similar techniques you can
write a whole library of Spark/MX compatible methods to
add, remove and retrieve controls from containers without
having to worry about the Spark or MX ancestry of those
containers. Doing this will save you from accidental
(and potentially catastrophic) errors when manipulating
controls at runtime in Spark applications.

But dealing with children solves only half of the
problem. You may also need to handle their parents. As
I explained earlier, a Spark parent is not the same as an
MX parent. So doing something as simple as moving
button1 into the same container as button2 could, if not
handled correctly, result in unexpected errors. If the

Listing 3. Determine whether a component is a Spark or an MX container

private static const SPARK_CONTAINER:String = "SPARK_CONTAINER";

private static const MX_CONTAINER:String = "MX_CONTAINER";

private static const NOT_A_CONTAINER:String = "NOT_A_CONTAINER";

private static function getContainerType (aCtrl:DisplayObjectContainer):String {

var cType:String = NOT_A_CONTAINER;

 if (aCtrl is Container) {

 cType = MX_CONTAINER;

 } else if (aCtrl is SkinnableContainer) {

 cType = SPARK_CONTAINER;

 } else if (aCtrl is Group) {

 cType = SPARK_CONTAINER;

 } else {

 cType = NOT_A_CONTAINER;

 }

 return cType;

}

05/2010 (13)40

FLEX

container of button2 is an MX container, then button2’s
parent is the container itself but if button2’s container is
a Spark container, its parent is not the container.

In the next article, I’ll explain how to find the visible
parent of any control ignoring any non-visible elements
which intervene between it and its container. This will
enable you to refer to Spark parents in a way that is
entirely compatible with MX parents. Once again, this
will simplify the coding of Flex 4 applications and make
them far less error-prone.

HUW COLLINGBOURNE
Huw Collingbourne is Director of Technology at SapphireSteel
Software. Over more than 20 years, he has programmed
in languages ranging from Ruby to C# and has been
a technical columnist for computer magazines such as PC
Pro and PC Plus. He is the software lead of the Amethyst
Designer, the Flex user interface design environment of the
Amethyst IDE for Visual Studio. SapphireSteel Software:
http://www.sapphiresteel.com/

Listing 4. Given any type of container, �nd its class and call either MX or Spark methods

private static function getClassType (anOb:Object):Class {

 var containerClass:Class;

 containerClass = anOb.constructor;

 return containerClass;

}

// return a Class object of current object

private static function getSparkContainerClass (anOb:Object):Class {

 var containerClass:Class;

 if (anOb is Group) {

 containerClass = Group;

 } else if (anOb is SkinnableContainer) {

 containerClass = SkinnableContainer;

 } else {

 containerClass = getClassType(anOb);

 // maybe display warning msg here?

 }

 return containerClass;

}

private static function addCtrlToMXContainer (ctrl:UIComponent, aContainer:Container):void {

 aContainer.addChild(ctrl);

}

private static function addCtrlToSparkContainer (ctrl:UIComponent, aContainer:Object):void {

 var sparkClass:Class;

 sparkClass = getSparkContainerClass(aContainer);

 (aContainer as sparkClass).addElement(ctrl);

}

public static function addChildOrElement (ctrl:UIComponent, aContainer:UIComponent):void {

 var containerType:String = getContainerType(aContainer);

 try {

 if (containerType == MX_CONTAINER) {

 addCtrlToMXContainer(ctrl, (aContainer as Container));

 } else if (containerType == SPARK_CONTAINER) {

 addCtrlToSparkContainer(ctrl, aContainer);

 } else {

 // Error! Unknown container type. Handle error here...

 }

 } catch (e:Error) {

 // handle Error here

 }

}

http://www.sapphiresteel.com

http://www.exsys.com

05/2010 (13)42

ZEND AND PHP

In our first article, we looked at building the remote
side of the interface with a Zend Framework
application. Before we continue with that, we’re

going to explore a feature in Flash Builder that you will
run across.

Let’s look first at how to create the data. If you have
an existing Flex application, you can right click on the
project name and select Properties. From there, click
on Flex Server and state the server side language
with which you’ll be working see (Figure 1). We have
chosen PHP as the application server type, but there
are a few more things to consider. The first is the web
root, the public document root of your web server. In
this case, it is set up as the document root for a specific
virtual host, because there are several projects running
simultaneously. Before you click OK, you need to
validate the configuration, which will determine that

the document root you entered is accurate. The last
text box to fill in, Output Folder, should be pre-filled for
you (In our example we changed it slightly. It is usually
entered as <ProjectName>-debug. We removed the –
debug.). This aligns with the folder structure we created
in the previous article.

Auto-generating your service layer
Among Flash Builder’s features is the ability to connect
to the database and create the class file needed to
directly access the table. This allows you to build very
simple CRUD applications with minimal coding from the
PHP side.

To auto-generate your code, start at the same place
you would if you were connecting to an existing service
layer, but instead of browsing for the class, ask Flash
Builder to build it for you see (Figure 2).

Doing this brings up another screen that allows you
to specify the connection parameters to connect to the
database and generate the class based on the columns
in the specified table see (Figure 3).

This will generate a basic class file for your
use, and a warning message see (Figure 4).

Remoting with Zend Studio
and Flash Builder – Part 2

In our previous article, we looked at building the remote
side of a PHP/Flash application using Zend Framework.
Today we’re going to look at matching up what you have on
the PHP side with what you want on the Flash side.

With Zend Studio, Zend Framework
and Adobe Flash Builder

Figure 1. Figure 2.

Remoting with Zend Studio and Flash Builder- Part 2

05/2010 (13) 43

The code quality is fine, but does not lend itself well to
re-use. However, as Flash Builder said, this should be
considered sample code and not used in a production
environment. When you compare this to our code
previously written using Zend_Db, you can also see
a marked difference in the amount of code that needs
to be maintained.

public function getCensusByID($itemID)

{

 $tbl = new Model_DbTable_Census();

 return $tbl->find($itemID)->current();

}

So, while you can use the auto-generated code, our
advice (and Adobe’s) is to use the code generation for
scaffolding your application, at most.

Mirroring your remote server
To access data on the remote side in your Flash
application, mirror the class. Here is where you might

This is an important warning, which corresponds to the
previous screen’s statement that this is a sample class.
Here is a snippet.

class Census {

 var $username = "root";

 var $password = "";

 var $server = "localhost";

 var $port = "";

 var $databasename = "census";

 var $tablename = "census";

 var $connection;

…

There are three things to note about this code. First,
it is generally not a good idea to have your username
and password stored directly in a class file. That
means that changing a database password requires
a full redeployment of your application. Second, this
code is compatible with PHP 4, which reached its end-
of-life in 2008. And third, the generated code may not
fit well within the context of a larger application see
(Listing 1).

Figure 3.

Figure 4.

Listing 1.

public function getCensusByID($itemID) {

 $stmt = mysqli_prepare(

 $this->connection,

 "SELECT * FROM $this->tablename where id=?"

);

 $this->throwExceptionOnError();

 mysqli_stmt_bind_param($stmt, 'i', $itemID);

 $this->throwExceptionOnError();

 mysqli_stmt_execute($stmt);

 $this->throwExceptionOnError();

 mysqli_stmt_bind_result(

 $stmt,

 $row->age,

 $row->classofworker,

 $row->education,

 $row->maritalstatus,

 $row->race,

 $row->sex, $row->id

);

 if(mysqli_stmt_fetch($stmt)) {

 return $row;

 } else {

 return null;

 }

}

05/2010 (13)44

ZEND AND PHP

want to do some thinking. In this basic example, we only
have one database table that we need to provide an
interface to, but there are two classes that we need to
be aware of. The first is the CensusService class, which
will provide access to the necessary functionality and
a gateway between what you need to do and the model
representing the data in the table.

Two types of introspection are needed. First,
introspect the service class, taking the same route as
when we used the auto-generated code, but rather than
generating the code, introspect it see (Figure 5).

This is the same format as the generated class, but it
is integrated more tightly with the application structure
that we presented in our first article.

What we see here is the introspection of our PHP
service class. But because we didn’t define the
parameter types for the individual service calls, though
we could do that for when a certain object type is
required. However, for the general PHP scalar types,
that information cannot be determined, so we will need
to specify the type see (Figure 6).

Here we are simply stating that the parameter being
passed will be a number.

The return value, however, is much more important.
Flash Builder calls the service call and determines,
based on the return type from PHP, what the
corresponding Flash class needs to be see (Figure 7).

Two important things to consider here. First, the name
of our class has been taken and is defined as a new
class. Second, each of the individual properties has
been found. Because this is a new data type, Flash
Builder will automatically build out a class structure
designed to directly interface with the PHP class see
(Figure 8).

This generated code contains both the code for
interfacing with the service class that we had defined,
and definitions for the individual properties that align
with the PHP class properties.

Conclusion
This article has demonstrated how you can bridge the
gap between your Flash and PHP applications. In our
next installment we will look at tying everything together
and creating a working multi-tier application.

KEVIN SCHROEDER

Figure 5.

Figure 6.

Figure 7.

Figure 8.

http://www.fitc.ca/SF

05/2010 (13)46

INTERVIEW Interview with Chris Gross

05/2010 (13) 47

It seems like the Flex world was waiting for an
add-on like SourceMate. What gave you the
idea to create SourceMate?
Yes, we believe SourceMate fills a real need for
advanced IDE capabilities for Flex and Flash developers.
We created SourceMate because, just like others, we
also wanted those features. All of us at ElementRiver
are both Java and Flex developers. In the Java world,
we were used to the advanced features offered by IDE’s
like Eclipse and we wanted those for Flex. We also have
significant experience developing Eclipse plug-ins and
development tools. So it made perfect sense for us to fill
the need for these tools in the Flex ecosystem.

From code generation (ex. Generate Getters/
Setters) to refactoring, to metadata code
hinting and TODO markers, SourceMate
contains a wide range of time-saving
features. Which features are the most popular
and why?

The code templates, which could be described as
insertable snippets, are probably the most popular. The
feature is very powerful and very flexible. Just enter
the first few characters of the snippet’s name, trigger
Flash Builder’s content assist via [CTRL]+[space], and
SourceMate will insert the snippet into your code. The
power really comes from the variables inside those
snippets. The snippets can contain variables which
will be evaluated when the snippet is inserted. For
example, ${enclosing_method} is a variable that will be
resolved to the name of the function the snippet was
inserted into. Variables can also provide a tabbed
completion mode when snippets need additional input.
For example, SourceMate includes a snippet named
constant. Type const and [CTRL]+[Space] and the
snippet is inserted, but remember that SourceMate
needs you to fill in the new constant’s name, data type,
and value. This is made easy by provide highlighting
around the spots that need values and by allowing you
to tab between these spots. Since you can create your

Interview with Chris Gross

ElementRiver, and more specifically SourceMate, are quickly
becoming household names to Flex and Flash developers.
This year Element River released SourceMate, an advanced
add-on to Flash Builder 4 that adds features like code
generation, refactoring, snippets, an ASDoc wizard, an Ant
build wizard, and more. Flex developers quickly took notice.
In this interview, we chat with Chris Gross, Founder and
President of ElementRiver.

Founder of ElementRiver

Figure 1. addEventListener

05/2010 (13)46

INTERVIEW Interview with Chris Gross

05/2010 (13) 47

close to the functionality provided by SourceMate.
SourceMate’s price tag, currently only $79.99, is
very reasonable. Given the high compensation of
most software developers, SourceMate only has to
save you a few hours to justify the investment. With
all the time saving and high efficiency features, we’re
confident SourceMate will pay for itself in less than
two weeks.

You mentioned Potomac. Can you tell us more
about Potomac and what it does?
Potomac is our open source framework for modular
enterprise Flex applications. Flex provides the basic
building blocks for a modular application. Potomac
builds on those features to provide a full framework
to take away the pain and complexity that arises in
large modular Flex applications. Potomac is loosely
modeled after OSGi and the base Eclipse platform.
OSGi is the defacto standard for large modular
applications in the Java world. The key feature
provided by OSGi and Potomac, is to abstract away
the loading and management of modules. You simply
declare the dependencies between modules, or
declare pieces of your application (in Potomac we
call them parts) and Potomac will load modules
when necessary. Has the user requested a certain
‘part’ on screen? If so, Potomac will load the module
that contains that part, and any modules it depends
on. Potomac will do this all without requiring special
coding from the developer, only the declarative
dependencies.

Potomac also includes many features necessary in
large enterprise applications like dependency injection,
a sophisticated UI framework, and a Flash Builder plug-
in to assist in Potomac development.

You can find more information about Potomac at http://
www.potomacframework.org.

Thanks Chris. Any closing thoughts?
I would reiterate that SourceMate will save you time and
money, increase your efficiency and eliminate some
programming headaches and you can download and
install it for free using our 30 day free trial to prove it. If
you are intrigued by what people have been saying on
their blogs and on twitter about SourceMate, then give
it a try. You have nothing to lose and everything to gain.
Once you start coding with SourceMate, it’s hard to go
back to just plain Flash Builder.

You can see an overview of features, download
the free trial, and purchase SourceMate at: http://
www.elementriver.com/sourcemate.

own snippets, and even export and share them, you
make use of these powerful features too.

There are two other features I’d also mention that
aren’t the most obvious features but seem to garner
a lot of praise. The first is our automatic event handler
generation for Actionscript. Flash Builder 4 provides a
similar feature in MXML. Put your cursor in an event
property of an MXML tag and Flash Builder will offer to
create an event handler for you. SourceMate can do the
same thing after you type addEventListener(Event.TYPE,.
Just trigger content assist via [CTRL]+[Space], and you’ll
see the event handler option (Figure 1).

The second feature is part of our metadata tag support.
SourceMate provides metadata tag code hinting but
there’s one part of this feature that users seem to
love the most. If you enter the [Embed] metadata tag,
SourceMate can provide hints for the source attribute.
So you no longer have to dig through your project to
remember where your images are or how to path those
correctly to the source file. SourceMate will provide a
popup of images for you to select from, and insert the
correct path for you.

When do you plan to release the next version
of SourceMate? What features will it include?
We’ve just announced the public beta for SourceMate
1.1. SourceMate 1.1 includes a handful of new features
primarily around customizing the code SourceMate
generates. SourceMate now includes options on where
brackets are placed, how event handlers are named,
the order of the function modifiers, and more. We’ve
also snuck in a few more useful features like automatic
hyperlinking in stack traces in the Flash Builder console.
Users of our enterprise Flex framework, Potomac,
will also be excited by the new Potomac/SourceMate
integration.

You can read more about v1.1 on our website: http://
www.elementriver.com/announcing-sourcemate-v1-1-beta/

We’re also making plans for a follow up release,
SourceMate 2.0, later this year.

Software developers are notoriously stingy
when it comes to spending on tools. With
so many free and open source options out
there, why should they spend money on
SourceMate?
While there are a few successful open source
add-ons for Flash Builder, none of them come

Figure 2. Embed

http://www.potomacframework.org
http://www.potomacframework.org
http://www.elementriver.com/sourcemate
http://www.elementriver.com/sourcemate
http://www.elementriver.com/announcing-sourcemate-v1-1-beta
http://www.elementriver.com/announcing-sourcemate-v1-1-beta

05/2010 (12)48

PROFILE

Ryan D’Agostino is a Interactive Developer
for NAS Recruitment Communications in
Cleveland, Ohio. He has worked with Flash
since 2004. Ryan currently teaches web
design, flash cartooning, and ActionScript 3.0
at Virginia Marti College of Art and Design in
Lakewood, Ohio. Ryan currently lives and works
in Cleveland, Ohio. In addition to teaching and
writing tutorials, he also does freelance work for
web development companies.

He is very passionate for teaching and adapting
to the constantly changing web frontier. Ryan
has previously written tutorials on creating an
XML Photo Gallery with AS3. In this issue he
has another tutorial on creating Fluid Layouts
in AS3. He plans to continue to write tutorials to
help with different aspects of Flash and Flex.

In his spare time, Ryan enjoys learning as much
as possible. He is currently learning ASP.net with
C#, HTML 5, JQuery, and Java. Ryan strives to
be well rounded in development, design, and
problem solving.

Projects:
www.precisionsupply.com – Design/HTML/
CSS/Flash
www.nasrecruitment.com – Design/HTML/CSS/
Flash/Papervision3D

Contact Info:
Ryan D’Agostino
codedbyryan@gmail.com
www.codedbyryan.com

Ryan
D’Agostino

http://www.precisionsupply.com
http://www.nasrecruitment.com
mailto:codedbyryan@gmail.com
http://www.codedbyryan.com

�������������������
���������������

���������

�����

����
���������������

��������������������

������������
�������������
�����������

���������������

http://www.flashandmath.com

05/2010 (13)50

BOOK REVIEW

O’Reilly cookbook series does not need any words of
introduction. These series are satiated with tips, tricks
and practical recipes for accomplishing different tasks.
In case of Flex 4 cookbook, eminent standard and
quality has been maintained for which the far-famed
authors behind it are famous for. This book lists quick
& complete recipes from basics to intermediate level
which you can integrate in your projects or perhaps you
can learn how different things are done in Flex 4.

I won’t write much on it, because it’s 24 chapters and
table of contents are more than enough to make you fall
in love for this book. There are not many books in print
about Flex 4, so missing this book is not going to be a
wise decision for your flex growth.

Highly recommend for beginners and intermediate
level developers though advanced developers could
benefit as well.

by Ali RAZA
Adobe Certified Instructor
Sun Certified Java Programmer
Zend Certified Engineer

Flex 4 Cookbook
Real-world recipes for
developing Rich Internet Applications

Authors: Joshua Noble, Todd Anderson,
Garth Braithwaite, Marco Casario, Rich Tretola
Publisher: O’Reilly Media / Adobe Dev Library
ISBN: 978-0-596-80561-6
Pages: 768
Website: http://oreilly.com/catalog/9780596805623

http://oreilly.com/catalog/9780596805623

http://actionscriptjobs.com/

	Cover
	Editor’s Note
	CONTENTS
	Google TV& Showcase
	Flex, Flash,AIR Showcase
	Refactoring Actionscript Code with SourceMate
	Overcoming FUD Protecting, Licensing and Selling Adobe Flex & AIR Apps
	IN BRIEF
	Getting Started to develop Android apps with Adobe AIR
	Preparing a Robot to Play FarmVille Automatically
	Fluid Layouts with ActionScript 3.0
	Flex 4 The Problem With Children
	Remoting with Zend Studioand Flash Builder – Part 2
	Interview with Chris Gross Founder of ElementRiver
	PROFILE Ryan D’Agostino
	BOOK REVIEW

